Doctoral Schools WUT

Search Engine for Promoters and Research Areas

Wykaz obszarów badawczych związanych z tagiem Online-adaptation:

# Obszar badawczy Dziedzina naukowa

A prevalent theme present in the contemporary representation learning approaches is to pre-train large foundation models on huge datasets. Such approaches utilize static datasets constructed at a particular point in time, which contrasts with the constantly changing and expanding nature of data available on the internet. The proposed research will explore a new paradigm where the training dataset is constructed on the fly by querying the internet, enabling efficient adaptation of representation learning models to selected target tasks. The aims of this research project include 1) design methods to query relevant training data and use it to adapt the representation learning model in a continuous manner, 2) make progress towards building self-supervised methods that given a description of a task, autonomously formulate their learning curricula, query the internet for relevant training data, and use it to iteratively optimize the model.